Discover Top-Rated Products from Amazon

EDN announces winners of the 2025 Product of the Year Awards



Electronic Products of the Year 2025 logo.

The annual awards, now in its 50th year, recognizes outstanding products that represent any of the following qualities: a significant advancement in a technology or its application, an exceptionally innovative design, a substantial achievement in price/performance, improvements in design performance, and the potential for new product designs/opportunities. EDN editors evaluated 100+ products across 13 categories. There are two ties, in the power and sensors categories. Here are this year’s winners:

  • Allegro MicroSystems Inc. and SensiBel (Sensors)
  • Ambiq (Development Kits)
  • Cree LED (Optoelectronics)
  • Circuits Integrated Hellas (Modules)
  • Empower Semiconductor and Ferric Corp. (Power)
  • Littelfuse Inc. (Passives)
  • Marvell Technology Inc. (Interconnects)
  • Morse Micro Ltd. (IoT Platforms)
  • Renesas Electronics Corp. (Digital ICs)
  • Rohde & Schwarz (Test & Measurement)
  • Semtech Corp. (RF/Microwave)
  • Sensata Technologies (Electromechanical)
  • Stathera Inc. (Analog/Mixed-Signal ICs)

Allegro MicroSystems Inc.

Sensors: ACS37100 magnetic current sensor

Allegro MicroSystems’ ACS37100 is a fully integrated tunneling magnetoresistive (TMR) current sensor that delivers high accuracy and low noise for demanding control loop applications. Marking a critical inflection point for magnetic sensors, it is the industry’s first commercially available magnetic current sensor to achieve 10-MHz bandwidth and 50-ns response time, the company said.

The ACS37100 magnetic current sensor, based on Allegro’s proprietary XtremeSense TMR technology, is 10× faster and generates 4× lower noise than alternative Hall-based sensors. This performance solves challenges in high-voltage power conversion, especially related to gallium nitride (GaN) and silicon carbide (SiC) solutions. The ACS37100 helps power system designers leverage the full potential of fast-switching GaN and SiC FETs by providing precise current measurement and integrated overcurrent fault detection.

The current sensor delivers a low noise of 26-mA root mean square across the full 10-MHz bandwidth, enabling precise, high-speed current measurements for more accurate and responsive system performance.

While GaN and SiC promise greater power density and efficiency, the faster switching speeds of wide-bandgap semiconductors create significant control challenges. At sub-megahertz frequencies, conventional magnetic current sensors lack the speed and precision to provide the high-fidelity, real-time data required for stable control and protection loops, Allegro MicroSystems said.

Target applications include electric vehicles, clean-energy power conversion systems, and AI data center power supplies, in which the 10-MHz bandwidth and 50-ns response time provide the high-fidelity data needed. The operating temperature range is –40°C to 150°C.

Allegro MicroSystems’ ACS37100 TMR magnetic current sensor.
Allegro MicroSystems’ ACS37100 TMR magnetic current sensor (Source: Allegro MicroSystems Inc.)

Ambiq

Development Kits: neuralSPOT AI development kit

Ambiq’s neuralSPOT software development kit (SDK) is designed specifically for embedded AI on the company’s ultra-low-power Apollo system-on-chips (SoCs). It helps AI developers handle the complex process of model integration with a streamlined and scalable workflow.

The SDK provides a comprehensive toolkit comprising Ambiq-optimized libraries, feature extractors, device drivers, and pre-trained AI models, making it easier for developers to quickly prototype, test, and deploy models using real-world sensor data while integrating optimized static libraries into production applications. This reduces both development effort and energy consumption.

The neuralSPOT SDK and Toolkit bridge the gap between AI model creation, deployment, and optimization, Ambiq said, enabling developers to move from concept to prototype in minutes, not days. This is thanks in part to its intuitive workflow, pre-validated model templates, and seamless hardware integration.

The latest neuralSPOT V1.2.0 Beta release includes ready-to-use example implementations of popular AI applications, such as human activity recognition for wearable and fitness analytics, ECG monitoring, keyword spotting, speech enhancement, and speaker identification.

Key challenges that the neuralSPOT SDK addresses include high power consumption, energy limits, limited development tools, and complex setup. This is particularly important when enabling AI on compact, battery-powered edge devices in which manufacturers must balance performance, power efficiency, and usability.

The SDK provides a unified, developer-friendly toolkit with Ambiq-optimized libraries, drivers, and ready-to-deploy AI models, which reduces setup and integration time from days to hours. It also simplifies model validation for consistent results and quicker debugging and provides real-time insights into energy performance, helping developers meet efficiency goals early in the design process.

Ambiq’s neuralSPOT for the Apollo5 SoCs.
Ambiq’s neuralSPOT for the Apollo5 SoCs (Source: Ambiq)

Circuits Integrated Hellas

Modules: Kythrion antenna-in-package

The Kythrion chipset from Circuits Integrated Hellas (CIH) is called a game-changer for satellite communications. It is the first chipset to integrate transmit, receive, and antenna functions into a proprietary 3D antenna-in-package and system-in-package architecture.

By vertically stacking III-V semiconductors (such as gallium arsenide and GaN) with silicon, Kythrion achieves more than 60% reductions in size, weight, power, and cost compared with traditional flat-panel antenna modules, according to the company. This integration eliminates unnecessary printed-circuit-board (PCB) layers by consolidating RF, logic, and antenna elements into a dense 3D chip for miniaturization and optimized thermal management within the package. This also simplifies system complexity by combining RF and logic control on-chip.

CIH said this leap in miniaturization allows satellites to carry more advanced payloads without increasing mass or launch costs, while its 20× bandwidth improvement delivers real-time, high-throughput connectivity. These features deliver benefits to aerospace, defense, and commercial networks, with applications in satellite broadband, 5G infrastructure, IoT networks, wireless power, and defense and aviation systems.

Compared with traditional commercial off-the-shelf phased-array antennas, which typically require hundreds of separate chips (e.g., 250 transmit and 250 receive chips) and require a larger footprint around 4U, Kythrion reduces the module count to just 50 integrated modules, fitting into a compact, 1U form factor. This results in a weight reduction from 3 kg to 4 kg, down to approximately 1.5 kg, while power consumption is lowered by 15%. Cost per unit is also significantly reduced, CIH said.

The company also considered sustainability when designing the Kythrion antenna-in-package. It uses existing semiconductor processes to eliminate capital-intensive retooling, which lowers carbon impact. In addition, by reducing satellite mass, each kilogram saved in satellite payload can reduce up to 300 kg of CO2 emissions per launch, according to CIH.

CIH’s Kythrion antenna-in-package.
CIH’s Kythrion antenna-in-package (Source: Circuits Integrated Hellas)

Cree LED, a Penguin Solutions brand

Optoelectronics: XLAMP XP-L Photo Red S Line LEDs

Advancing horticulture lighting, Cree LED, a Penguin Solutions brand, launched the XLAMP XP-L Photo Red S Line LEDs, optimized for large-scale growing operations, including greenhouses and vertical farms, with higher efficiency and durability.

Claiming a new standard in efficiency and durability for horticultural LED lighting, the XLAMP XP-L Photo Red S Line LEDs provide a 6% improvement in typical wall-plug efficiency over the previous generation, reaching 83.5% at 700 mA and 25°C. Horticultural customers can reduce operating costs with the same output with less power consumption, or they can lower initial costs with a redesign that cuts the number of Photo Red LEDs required by up to 35%, Cree LED said.

Thanks to its advanced S Line technology, the XP-L Photo Red LEDs offer high sulfur and corrosion resistance that extend their lifespan and deliver reliable performance. These features reduce maintenance costs while enabling the devices to withstand harsh greenhouse environments, the company said.

Other key specifications include a maximum drive current of 1,500 mA, a low thermal resistance of 1.15°C/W, and a wide viewing angle of 125°. The LEDs are binned at 25°C. They are RoHS- and REACH-compliant.

These LEDs also provide seamless upgrades in existing designs with the same 3.45 × 3.45-mm XP package as the previous XP-G3 Photo Red S Line LEDs.

Cree LED’s XLamp XP-L Photo Red S Line LEDs.
Cree LED’s XLamp XP-L Photo Red S Line LEDs (Source: Cree LED, a Penguin Solutions brand)

Empower Semiconductor

Power: Crescendo vertical power delivery

Empower Semiconductor describes Crescendo as the industry’s first true vertical power delivery platform designed for AI and high-performance-computing processors. The Crescendo chipset sets a new industry benchmark with 20× faster response and breakthrough sustainability and enables gigawatt-hours in energy savings per year for a typical AI data center.

The vertical architecture achieves multi-megahertz bandwidth, 5× higher power density, and over 20% lower delivery losses while minimizing voltage droop and accelerating transient response. The result is up to 15% lower xPU power consumption and a significant boost in performance per watt, claiming a new benchmark for efficiency and scalability in AI data center systems.

The Crescendo platform is powered by Empower’s patented FinFast architecture. Scalable beyond 3,000 A, Crescendo integrates the regulators, magnetics, and capacitors into a single, ultra-thin package that enables direct placement underneath the SoC. This relocates power conversion to where it’s needed most for optimum energy and performance, according to the company.

Empower said the Crescendo platform is priced to be on par with existing power delivery solutions while offering greater performance, energy savings, and lower total cost of ownership for data centers.

Empower’s Crescendo vertical power delivery.
Empower’s Crescendo vertical power delivery (Source: Empower Semiconductor)

Ferric Corp.

Power: Fe1766 DC/DC step-down power converter

Ferric’s Fe1766 160-A DC/DC step-down power converter offers industry-leading power density and performance in an ultra-compact, 35-mm2 package with just 1-mm height. The Fe1766 is a game-changer for high-performance computing, AI accelerators, and data center processors with its extremely compact form factor, high power density, and 100× faster switching speeds for precise, high-bandwidth regulation, Ferric said.

Integrating inductors, capacitors, FETs, and a controller into a single module, the Fe1766 offers 4.5-A/mm2 power density, which makes it 25× smaller than traditional alternatives, according to the company. The integrated design translates into a board area reduction of up to 83%.

The FE1766 switches at 30 to 100 MHz, ensuring extremely fast power conversion with high-bandwidth regulation and 30% better efficiency than conventional solutions and 20% reduced cost compared with existing designs. Other features include real-time telemetry (input voltage, output voltage, current, and temperature) and comprehensive fault protection (UVLO, OVP, UVP, OCP, OTP, etc.), providing both reliability and performance.

However, the most significant feature is its scalability, with gang operation of up to 64 devices in parallel for a power delivery exceeding 10 kA directly to the processor core. This makes it suited for next-generation multi-core processors, GPUs, FPGAs, and ASICs in high-density and high-performance systems, keeping pace with growth in computing power and core counts, particularly in AI, machine learning, and data centers.

Ferric’s Fe1766 DC/DC step-down power converter.
Ferric’s Fe1766 DC/DC step-down power converter (Source: Ferric Corp.)

Littelfuse Inc.

Passives: Nano2 415 SMD fuse

The Littelfuse Nano2 415 SMD fuse is the industry’s first 277-VAC surface-mount fuse rated for a 1,500-A interrupting current. Previously, this was achievable only with larger through-hole fuses, according to the company. It allows designers to upgrade protection and transition to automated reflow processes, reducing assembly costs while improving reliability and surge-withstand capability.

The Nano2 415 SMD fuse bridges the gap between legacy cartridge and compact SMD solutions while advancing both performance and manufacturability, Littelfuse said. Its compact, 15 × 5-mm footprint and time-lag characteristic protect high-voltage, high-fault-current circuits while enabling reflow-solder assembly. It is compliant with UL/CSA/NMX 248-1/-14 and EN 60127-1/-7.

The Nano2 415 SMD Series offers high I2t performance. It is halogen-free and RoHS-compliant. Applications include industrial power supplies, inverters, and converters; appliances and HVAC systems; EV chargers and lighting control; and smart building and automation systems.

Littelfuse’s Nano2 415 SMD Fuse.
Littelfuse’s Nano2 415 SMD Fuse (Source: Littelfuse Inc.)

Marvell Technology Inc.

Interconnects: 3-nm 1.6-Tbits/s PAM4 Interconnect Platform

The Marvell 3-nm 1.6-Tbits/s PAM4 Interconnect Platform claims the industry’s first 3-nm process node optical digital-signal processor (DSP) architecture, targeting bandwidth, power efficiency, and integration for AI and cloud infrastructure. The platform integrates eight 200G electrical lanes and eight 200G optical lanes in a compact, standardized module form factor.

The new platform sets a new standard in optical interconnect technology by integrating advanced laser drivers and signal processing in a single, compact device, Marvell said. This reduces power per bit and simplifies system design across the entire AI data center network stack.

The 3-nm PAM4 platform addresses the I/O bandwidth bottleneck by combining next-generation SerDes technology and laser driver integration to achieve higher bandwidth and power performance. It leverages 200-Gbits/s SerDes and integrated optical modulator drivers to reduce 1.6-Tbits/s optical module power by over 20%. The energy-efficiency improvement reduces operational costs and enables new AI server and networking architectures to meet the requirements for higher bandwidth and performance for AI workloads, within the significant power constraints of the data center, Marvell said.

The 1.6-Tbits/s PAM4 DSP enables low-power, high-speed optical interconnects that support scale-out architectures across racks, rows, and multi-site fabrics. Applications include high-bandwidth optical interconnects in AI and cloud data centers, GPU-to-GPU and server interconnects, rack-to-rack and campus-scale optical networking, and Ethernet and InfiniBand scale-out AI fabrics.

The DSP platform reduces module design complexity and power consumption for denser optical connectivity and faster deployment of AI clusters. With a modular architecture that supports 1.6 Tbits/s in both Ethernet and InfiniBand environments, this platform allows hyperscalers to future-proof their infrastructure for the transition to 200G-per-lane signaling, Marvell said.

Morse Micro Pty. Ltd.

IoT Platforms: MM8108 Wi-Fi HaLow SoC

Morse Micro claims that the MM8108 Wi-Fi HaLow SoC is the smallest, fastest, lowest-power, and farthest-reaching Wi-Fi chip. The MM8108, built on the IEEE 802.11ah standard, establishes a new benchmark for performance, efficiency, and scalability in IoT connectivity. It delivers data rates up to 43.33 Mbits/s using the industry’s first sub-gigahertz, 256-QAM modulation, combining long-range operation with true broadband throughput.

The MM8108 Wi-Fi HaLow extends Wi-Fi’s reach into the sub-1-GHz spectrum, enabling multi-kilometer connectivity, deep penetration through obstacles, and support for 8,000+ devices per access point. Outperforming proprietary LPWAN and cellular alternatives while maintaining full IP compatibility and WPA3 enterprise security, the wireless platform reduces deployment cost and power consumption by up to 70%, accelerates certification, and expands Wi-Fi’s use beyond homes and offices to cities, farms, and factories, Morse Micro said.

The MM8108 SoC’s integrated 26-dBm power amplifier and low-noise amplifier achieve “outstanding” link budgets and global regulatory compliance without external SAW filters. It also simplifies system design and reduces power draw with a 5 × 5-mm BGA package, USB/SDIO/SPI interfaces, and host-offload capabilities. This allows devices to run for years on a coin-cell or solar battery, Morse Micro said.

The MM8108-RD09 USB dongle complements the SoC, enabling fast HaLow integration with existing Wi-Fi 4/5/6/7 infrastructure. It demonstrates plug-and-play Wi-Fi HaLow deployment for industrial, agricultural, smart city, and consumer applications. The dongle is fully IEEE 802.11ah–compliant and Wi-Fi CERTIFIED HaLow-ready, allowing developers to test and commercialize Wi-Fi HaLow solutions quickly.

Together, the MM8108 and RD09 combine kilometer-scale range, 100× lower power consumption, and 10× higher capacity than conventional Wi-Fi while maintaining the simplicity, interoperability, and security of the wireless standard, the company said.

Applications range from smart cities (lighting, surveillance, and environmental monitoring networks spanning kilometers) and industrial IoT (predictive maintenance, robotics, and asset tracking in factories and warehouses) to agriculture (solar-powered sensors for crop, irrigation, and livestock management), retail and logistics (smart shelves, POS terminals, and real-time inventory tracking), and healthcare (long-range, low-power connectivity for remote patient monitoring and smart appliances).

Morse Micro’s MM8108 Wi-Fi HaLow SoC.
Morse Micro’s MM8108 Wi-Fi HaLow SoC (Source: Morse Micro Pty. Ltd.)

Renesas Electronics Corp.

Digital ICs: RA8P1 MCUs

Renesas’s RA8P1 group is the first group of 32-bit AI-accelerated microcontrollers (MCUs) powered by the high-performance Arm Cortex-M85 (CM85) with Helium MVE and Ethos-U55 neural processing unit (NPU). With advanced AI, it enables voice, vision, and real-time-analytics AI applications on a single chip. The NPU supports commonly used networks, including DS-CNN, ResNet, Mobilenet, and TinyYolo. Depending on the neural network used, the Ethos-U55 provides up to 35× more inferences per second than the Cortex-M85 processor on its own, according to the company.

The RA8P1, optimized for edge and endpoint AI applications, uses the Ethos-U55 NPU to offload the CPU for compute-intensive operations in convolutional and recurrent neural networks to deliver up to 256 MACs per cycle, delivering 256 GOPS of AI performance at 500 MHz and breakthrough CPU performance of over 7,300 CoreMarks, Renesas said.

The RA8P1 MCUs integrate high-performance CPU cores with large memory, multiple external memory interfaces, and a rich peripheral set optimized for AI applications.

The MCUs, built on the advanced, 22-nm ultra-low-leakage process, are available in single- and dual-core options, with a Cortex-M33 core embedded on the dual-core MCUs. Single- and dual-core devices in 224- and 289-BGA packages address diverse use cases across broad markets. This process also enables the use of embedded magnetoresistive RAM, which offers faster write speeds, in the new MCUs.

The MCUs also provide advanced security. Secure Element–like functionality, along with Arm TrustZone, is built in with advanced cryptographic security IP, immutable storage, and tamper protection to enable secure edge AI and IoT applications.

The RA8P1 MCUs are supported by Renesas’s Flexible Software Package, a comprehensive set of hardware and software development tools, and RUHMI (Renesas Unified Heterogenous Model Integration), a highly optimized AI software platform providing all necessary tools for AI development, model optimization, and conversion, which is fully integrated with the company’s e2 studio integrated design environment.

Renesas Electronics’ RA8P1 MCU group.
Renesas Electronics’ RA8P1 MCU group (Source: Renesas Electronics Corp.)

Rohde & Schwarz

Test & Measurement: FSWX signal and spectrum analyzer

The Rohde & Schwarz FSWX is the first signal and spectrum analyzer with multichannel spectrum analysis, cross-correlation, and I/Q preselection. It features an internal multi-path architecture and high RF performance, with an internal bandwidth of 8 GHz, allowing for comprehensive analysis even of complex waveforms and modulation schemes.

According to Rohde & Schwarz, this represents a fundamental paradigm shift in signal-analysis technology. Cross-correlation cancels the inherent noise of the analyzer and gives a clear view of the device under test, pushing the noise level down to the physical limit for higher dynamic range in noise, phase noise, and EVM measurements.

By eliminating its own noise contribution (a big challenge in measurement science), the FSWX reveals signals 20–30 dB below what was previously measurable, enabling measurements that were impossible with traditional analyzers, the company said.

Addressing critical challenges across multiple industries, the multichannel FSWX offers the ability to measure two signal sources simultaneously with synchronous input ports, each featuring 4-GHz analysis bandwidth, opening phase-coherent measurements of antenna arrays used in beamforming for wireless communications, as well as in radar sensors and electronic warfare systems. For 5G and 6G development, the cross-correlation feature enables accurate EVM measurements below –50 dB that traditional analyzers cannot achieve, according to Rohde & Schwarz.

In radar and electronic warfare applications, the dual channels can simultaneously measure radar signals and potential interference from 5G/Wi-Fi systems. In addition, for RF component makers, the FSWX performs traditional spectrum analyzer measurements, enabling Third Order Intercept measurements near the thermal noise floor without any internal or external amplification.

The FSWX uses broadband ADCs with filter banks spanning the entire operating frequency range, allowing for pre-selected signal analysis while eliminating the need for YIG filters. This solves “a 50-year-old compromise between bandwidth and selectivity in spectrum analyzer design,” according to the company, while providing improved level-measurement accuracy and much faster sweep times.

No other manufacturer offers dual synchronous RF inputs with phase coherence, cross-correlation for general signals, 8-GHz preselected bandwidth, and multi-domain triggering across channels, according to Rohde & Schwarz. This makes it an architectural innovation rather than an incremental improvement.

Rohde & Schwarz’s FSWX signal and spectrum analyzer.
Rohde & Schwarz’s FSWX signal and spectrum analyzer (Source: Rohde & Schwarz)

Semtech Corp.

RF/Microwave: LR2021 RF transceiver

The LR2021 is the first transceiver chip in Semtech’s LoRa Plus family, leveraging its fourth-generation LoRa IP that supports both terrestrial and SATCOM across sub-gigahertz, 2.4-GHz ISM bands, and licensed S-band. The transceiver is designed to be backward-compatible with previous LoRa devices for seamless LoRaWAN compatibility while featuring expanded physical-layer modulations for fast, long-range communication.

The LR2021 is the first transceiver to unify terrestrial (sub-gigahertz, 2.4-GHz ISM) and satellite (licensed S-band) communications on a single chip, eliminating the traditional requirement for separate radio platforms. This enables manufacturers to deploy hybrid terrestrial-satellite IoT solutions with single hardware designs, reducing development complexity and inventory costs for global deployments.

The LR2021 also delivers a high data rate of up to 2.6 Mbits/s, enabling the transmission of higher data-rate content with outstanding link budget and efficiency. The transceiver enables the use of sensor-collected data to train AI models, resulting in better control of industrial applications and support of new applications.

This represents a 13× improvement over Gen 3 LoRa transceivers (Gen 3 SX1262: maximum 200-kbits/s LoRa data rate), opening up new application categories previously impossible with LPWAN technology, including real-time audio classification, high-resolution image recognition, and edge AI model training from battery-powered sensors.

It also offers enhanced sensitivity down to –142 dBm @ SF12/125 kHz, representing a 6-dBm improvement over Gen 3 devices (Gen 3 SX1262: –148-dBm maximum sensitivity at lower spreading factors, typically –133-dBm operational sensitivity). The enhanced sensitivity extends coverage range and improves deep-indoor penetration for challenging deployment environments.

Simplifying global deployment, the transceiver supports multi-region deployment via a single-SKU design. The integration reduces bill-of-material costs, PCB footprint, and power consumption compared with previous LoRa transceivers. The increased frequency offset tolerance eliminates TCXO requirements and large thermal requirements, eliminating components that traditionally added cost and complexity to multi-region designs.

The device is compatible with various low-power wireless protocols, including Amazon Sidewalk, Meshtastic, W-MBUS, Wi-SUN FSK, and Z-Wave when integrated with third-party stack offerings.

Semtech’s LR2021 RF transceiver.
Semtech’s LR2021 RF transceiver (Source: Semtech Corp.)

Sensata Technologies Inc.

Electromechanical: High Efficiency Contactor

Sensata claims a breakthrough electromechanical solution with its High Efficiency Contactor (HEC), designed to accelerate the transition to next-generation EVs by enabling seamless compatibility between 400-V and 800-V battery architectures. As the automotive industry moves toward ultra-fast charging and higher efficiency, the HEC targets vehicles that can charge rapidly at both legacy and next-generation charging stations.

By enabling the seamless reconfiguration between 400-V and 800-V battery systems, this capability allows EVs to charge efficiently at both legacy 400-V charging stations and emerging 800-V ultra-fast chargers, ensuring compatibility and eliminating infrastructure barriers for OEMs and end users.

A key differentiator is its ability to dramatically reduce system complexity and cost. By integrating three high-voltage switches into a single, compact device, the HEC achieves up to a 50% reduction in component count compared with traditional battery-switching solutions, according to Sensata, simplifying system integration and lowering costs.

The HEC withstands short-circuit events up to 25 kA and mechanical shocks greater than 90 g while maintaining ultra-low contact resistance (~50 μΩ) for minimal energy loss.

The HEC features a unique mechanical synchronization that ensures safer operation by eliminating the risk of short-circuit events (a critical safety advancement for high-voltage EV systems). It also offers a bi-stable design and ultra-low contact resistance that contribute to greater energy efficiency during both charging and driving.

The bi-stable design eliminates the need for holding power, further improving energy efficiency, Sensata said.

 

The HEC targets automotive, truck, and bus applications including vehicle-to-grid, autonomous driving, and megawatt charging scenarios. It is rated to ASIL-D.

Sensata’s High Efficiency Contactor.
Sensata’s High Efficiency Contactor (Source: Sensata Technologies)

SensiBel

Sensors: SBM100B MEMS microphone

SensiBel’s SBM100B optical MEMS digital output microphone delivers 80-dBA signal-to-noise ratio (SNR) and 146-dB SPL acoustic overload point (AOP). Leveraging its patented optical sensing technology, the SBM100B achieves performance significantly surpassing anything that is available on the market today, according to the company. It delivers the same audio recording quality that users experience with professional studio microphones but in a small-form-factor microphone.

The 80-dB SNR delivers cleaner audio, reducing hiss and preserving clarity in quiet recordings. It is a significant achievement in noise and dynamic range performance for MEMS microphones, and it’s a level of audio performance that capacitive and piezo MEMS microphone technologies cannot match, the company said.

The SBM100B is also distortion-proof in high-noise environments. Offering an AOP of up to 146-dB SPL, the SBM100B delivers high performance, even in very loud environments, which often have high transient peaks that easily exceed the overload point of competitive microphones, SensiBel said.

The microphone offers studio-quality performance in a compact MEMS package (6 × 3.8 × 2.5-mm, surface-mount, reflow-solderable, bottom-port). With a dynamic range of 132 dB, it prevents distortion in loud environments while still capturing subtle audio details. It supports standard PDM, I2S, and TDM digital interfaces.

The SBM100B also supports multiple operational modes, which optimizes performance and battery life. This allows designers to choose between the highest performance or optimized power while still operating with exceptional SNR. It also supports sleep mode with very low current consumption. An optional I2C interface is available for customization of built-in microphone functions, including bi-quad filters and digital gain.

Applications include general conferencing systems, industrial sound detection, microphone arrays, over-the-ear and true wireless stereo headsets and earbuds, pro audio devices, and spatial audio, including VR/AR headsets, 3D soundbars, and field recorders.

SensiBel’s SBM100B MEMS microphone.
SensiBel’s SBM100B MEMS microphone (Source: sensiBel)

Stathera Inc.

Analog/Mixed-Signal ICs: STA320 DualMode MEMS oscillator

Stathera’s ST320 DualMode MEMS oscillator, in a 2.5 × 2.0 × 0.95-mm package, is a timing solution that generates both kilohertz and megahertz signals from a single resonator. It is claimed to be the first DualMode MEMS timing device capable of replacing two traditional oscillators.

The DualMode capability provides both the kilohertz clock (32.768 kHz) for low-power mode and megahertz (configurable 1–40 MHz) clock for control and communication. This simplifies embedded system design and enhances performance and robustness, along with an extended battery life and a reduction of PCB footprint space and system costs.

Key specifications include a frequency stability of ±20 ppm, a voltage range of 1.62 to 3.63 V, and an operating temperature of –40°C to 85°C. Other features include LVCMOS output and four configurable power modes. This device can be used in consumer, wearables, IoT, edge AI, and industrial applications.

Stathera’s ST320 DualMode MEMS oscillator.
Stathera’s ST320 DualMode MEMS oscillator (Source: Stathera Inc.)

The post EDN announces winners of the 2025 Product of the Year Awards appeared first on EDN.



Source link

We will be happy to hear your thoughts

Leave a reply

doorfast24.com
Logo
Compare items
  • Total (0)
Compare
0
Shopping cart